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Model of elastic responses of single DNA molecules in collapsing transition

Hirofumi Wada,* Yoshihiro Murayama, and Masaki Sano
Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan

~Received 25 August 2002; revised manuscript received 25 October 2002; published 30 December 2002!

We present a simple phenomenological model to describe elastic responses of a collapsed single DNA
molecule. The model is represented by the elastic theory for the wormlike chain combined with the order-
parameter equation, which accounts for the intramolecular transition kinetics. Our continuum and discrete
model reproduces the force plateaus and the stick-release patterns in the force-extension curves, respectively.
Both of the elastic responses have been observed experimentally by changing the concentration of the con-
densing agents.
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I. INTRODUCTION

Great advances in manipulating single macromolecu
have enlightened rich and fascinating physics of biopolym
such as double-stranded DNA and actin filament. In parti
lar, DNA condensation@1,2# has been the center of the co
centrated efforts of many researchers in relation to the pa
aging of DNA in viruses and living cells. Single molecu
observations by fluorescence microscopy have verified
individual DNA chains undergo a first-order phase transit
from an elongated coil state to a collapsed globule state w
the addition of various kinds of condensing agents such
multivalent cation@3,4#. It has been also observed by ele
tron microscopy that a toroidal structure appears as an e
librium collapsed state@5,6#.

Another feature of these biopolymers can be found in
mechanical property. A stiffness of a molecule yields a ch
acteristic elasticity. For a long DNA chain, the persisten
length is typically of the order of 50 nm. Thus, it behaves
a random coil under good solvent condition, whereas a lin
conformation is favored locally. Such a polymer is oft
called as a semiflexible polymer. In the low force regimes,
elastic response is almost the same as that of a long li
flexible polymer. However, a manifest deviation is found
the high force regime. The elastic property of a semiflexi
polymer is now understood quantitatively in the framewo
of wormlike chain~WLC! model @7,8#.

Thanks to huge amount of experimental and numer
studies, a rich store of knowledge on phase behavior
mechanical properties of a long DNA chain has been ac
mulated. But so far, the interplay between them has rece
limited attention. Our understanding of how the compact
of a single chain affects its mechanical properties is s
poor.

Very recently, elastic properties of a collapsed DNA m
ecule have been investigated experimentally by some gro
@9–11#. In our previous works@10,11# the elastic force of a
single DNA molecule was measured using dual-trap opt
tweezers in the coil-globule transition induced by a trivale
cation spermidine31 ~SPD!. We found that the force versu
extension curves showed two striking phases, i.e., force
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1063-651X/2002/66~6!/061912~10!/$20.00 66 0619
s
rs
-

k-

at
n
th
s

ui-

s
r-
e
s
ar

n
ar

e

l
d

u-
d

n
ll

-
ps

l
t

a-

teaus and stick-release patterns, depending on the conce
tion of SPD. When the concentration of SPD was 500mM,
the force plateau of 1–2 pN was observed during the po
mer being both stretched and relaxed. When the concen
tion of SPD was in the higher range from 1 mM to 100 mM
stick-release patterns appeared in stretching processes,
force plateaus of 0.5–2 pN were observed only during rel
ing. Besides, stick-release responses were obtained n
periodically. This indicates subsequent abrupt unfolding
collapsed objects. Similar but more pronounced stick-rele
pattern was also found in stretching experiment of the gi
sarcometric protein titin@12#. In this case, the periodicity
arises directly from the modular structure of titin. Thus, t
present case seems more difficult and profound becau
single DNA molecule is structurally homogeneous befo
collapsing.

It is tempting to characterize the elasticity of a collaps
DNA theoretically. In this paper, we present a simple ph
nomenological model which can reproduce the measu
force plateau and stick-release pattern in the force cur
Motivated by an analogy between a single DNA molecu
condensation and a crystal growth from a supersaturated
uid @13#, we adopt an order-parameter description to acco
for an intramolecular transition kinetics of a single chain.

In the following section, we introduce a continuum mod
describing a coil-globule transition in the presence of
external force. We restrict our interest to the force plateau
Secs. II and III. In Sec. III, we show by the numerical ca
culations that our model semiquantitatively reproduces
force plateau. In Sec. IV, we consider the discrete version
the model to investigate stick-release phenomena. Nume
calculations show that the modified model captures the
perimentally measured trends of stick-release patterns.
cussions and possibility of further improvement of our mod
are presented with brief summary in Sec. V.

II. FORMULATION

A. Guidelines for modeling

Our goal is to calculate a forceF of a collapsed DNA as a
function of its extensionx. Since the forceF versus exten-
sionx relation is a thermodynamical one, an approach ba
on equilibrium statistical mechanics seems rather promis
for our aim. As is well known, Marko and Siggia@8# derived
©2002 The American Physical Society12-1
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a force-extension formula for the ideal WLC by taking in
account the bending elasticity of the polymer within t
framework of equilibrium statistical mechanics. Its analytic
expression is given by

F~x!5
kBT

l p
S x

L
1

1

4~12x/L !2
2

1

4D , ~1!

whereL is the contour length,l p the persistence length,kB
the Boltzmann constant, andT the temperature.

However, the present situation seems quite different fr
the ideal case. In our case, elongated coils and compact g
ules coexist within a single molecule. In addition, transitio
between a coil and a collapsed state can be induced by
externally applied force. For instance, when the chain
stretched by a larger force than the short-range attrac
force for the compaction, some of globular objects underg
conformational transition to a random coil. Furthermore, i
not suitable to expect that the system is kept in thermal e
librium during stretching and relaxing. Thus, it is necess
to consider dynamical aspects of ordering processes
single molecule under the external force.

To investigate such a complicated system, a phenome
logical approach is often suitable. In this paper, we emplo
Ginzburg-Landau-type phenomenology to describe the in
nal structure of a single polymer. Combining an equation
the order parameter with the formula Eq.~1! in a simple
manner, we discuss the force-extension relation.

As already mentioned, experimentally measured for
extension curves showed plateaus and stick-release pat
depending on the depth of the condensation. It is not so e
however, to construct a generic model which can desc
both phases simultaneously. We consider the case of
force plateau at the first step. Next, by improving the mo
to suit the deep quench case, we will proceed to study
stick-release phenomena.

B. Model

When an intramolecular phase segregation has occu
and an elongated coil state and a collapsed state co
within a single polymer, an apparent contour lengthLa dif-
fers from the original oneL0 @14#. Presumably, the collapse
globule is hard to stretch compared to the coil. We then
pect that the percentage of coil state mostly determines
flexibility of the polymer. If we identify this polymer with an
ideal WLC having the contour lengthLa , a forceF and an
extensionx of the chain can be connected by the formula

F~x!5
kBT

l p
S x

La
1

1

4~12x/La!2
2

1

4D . ~2!

Then what we have to do is to calculate ‘‘effective conto
length’’ La under a given condition.

In this aim, we introduce an order parameterr along the
coordinates, wheres is the contour distance from one cha
end. We define thatr(s)ds represents the local contou
length of coil-like flexible part within a small sections;s
1ds ~see also Fig. 1!. r51 corresponds to a fully random
06191
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coil state, whiler50 indicates an entirely collapsed state.
a bimodal state,r varies from 0 to 1. We assume that
collapsed part (12r)ds acts like a coil part with its length
e(12r)ds, wheree!1. This immediately leads to the fol
lowing expression for the effective contour length:

La5E
0

L0
$e1~12e!r~s!%ds. ~3!

By the way, an ideal wormlike chain is nearly identical wi
a flexible polymer whends is larger than the persistenc
length l p . In such spatial resolution, the elasticity of th
polymer is not noticeable. Therefore, we have to choose
magnitude ofds smaller than the persistent length. In th
shallow quench case, a globule may be a so-called liq
blob rather than a crystal one because it is substantially sw
len. Hence, it is conceivable to expect that an interface
tween coil and globule is well defined with its thicknessj
comparable tol p . On the basis of these considerations,
determineds5 1

2 l p here.
By the definition,r is a nonconservative quantity. W

then assume thatr obeys following relaxational dynamics:

]r

]t
52L

d

dr
~bH !1h~s,t!, ~4!

whereb51/kBT. The Gauss-Markov thermal noiseh is as-
sumed to be related to the kinetic coefficientL via the
fluctuation-dissipation relation,

^h~s,t!h~s8,t8!&52Ld~s2s8!d~t2t8!. ~5!

H is the coarse-grained Hamiltonian of the system and
written in the form

bH5E
0

L0H c

2 S ]r

]sD 2

1W~r, f !J ds, ~6!

with a suitable upper cutoff wave numberL. Here,W is an
effective potential which includes the dimensionless forcf
5 l pF/kBT as a control parameter and has local minima
r50 andr51 for eachf. The profile ofW and its depen-
dency onf are shown in Fig. 2. Here, a critical force valuef c
is a material constant.

FIG. 1. Schematic illustration of the definition of the ord
parameter and the notion of the effective contour length.
2-2
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Choosing the polynomial form forW, we arrive at

h~r!52
]W

]r
5mr~12r!S r2

1

2
1k~ f ! D , ~7!

where uku,1/2. We assume thatc and m are positive con-
stants for simplicity.DW5W(1,f )2W(0,f )5(m/6)k( f ) is
proportional tof 2 f c , at least whenf is close tof c . On the
other hand,DW approaches constant values6(m/12) whenf
is away enough fromf c . Taking the numerical stability into
account, we adopt the specific form ofk( f ) as

k~ f !5
1

2
tanhS f 2 f c

v D , ~8!

wherev is a material constant. In what follows, we will ofte
useb( f )5 1

2 2k( f ) rather thank( f ) itself.
The equation of motion is now written as

]r

]t
5D

]2r

]s2
2lr~r2b!~r21!1h~s,t!, ~9!

where we putl5mL and D5cL, which is the diffusion
constant. Note thatl can be set to 1 by rescalingt
→l21t. Also takingL0 as the unit of space, the equation
motion is now expressed in the dimensionless form as

]r

]t
5n2

]2r

]s2
2r~r2b!~r21!1u~s,t!, ~10!

with the fluctuation-dissipation relation

^u~s,t!u~s8,t8!&52Md~s2s8!d~t2t8!. ~11!

Here,n25D/(lL0
2)5c/(mL0

2) is the dimensionless diffusion
constant, andM5L/(lL0)51/(mL0) is the noise intensity.
Note also thatn and M are now independent of the kinet
coefficientL.

Throughout this paper, we impose the zero-flux condit
as the boundary condition ofr:

]sr~s50,t!50, ]sr~s51,t!50. ~12!

C. Stationary solutions

One can readily find that Eq.~10! without the noise term
has a stationary propagating solution satisfying the bound
conditionr(s→`)50 andr(s→2`)51,

FIG. 2. Schematic representation of a double-well potentiaW
controlled by the parameterf.
06191
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r~s,t!5
1

2 H 12tanhS s2Ut

j D J , ~13!

with the interface thicknessj52A2n and the propagating
velocity

U5A2nS 1

2
2bD5

A2n

2
tanhS f 2 f c

v D . ~14!

For b. 1
2 , which is equivalent tof , f c , the domain

boundary~interface! is driven so that more stable regionr
50 can expand, while forb, 1

2 , which is equivalent tof
. f c , the boundary moves in order to enlarge more sta
regionr51. Only when the conditionf 5 f c is kept for suf-
ficiently long time, the whole system can reach the glo
thermal equilibrium. It is also noted that these analytic
sults are useful to check the validity of the numerical calc
lations which we perform in the following section.

III. NUMERICAL SIMULATION

A. Calculation methods

In the following simulations, we obtainF-x curves as a
set of consecutive data points (xi ,Fi),(i 51,2, . . . ,ND) in
stretching and relaxing processes, respectively. We alw
control the extensionxi and calculate the correspondin
force Fi . In each measurement of (xi ,Fi), the extension is
fixed at some value during a certain waiting timeTw after its
instantaneous change. Since the force fluctuates during
waiting timeTw , we average the force for the waiting tim
in each measurement:

Fi5
kBT

l p
F 1

Tw
E

0

Tw
f ~xi ,t!dtG . ~15!

The parameters are fixed atL055 mm, l p525 nm, T
5296 K corresponding to the setup of the experiment@11#.
Since the thickness of the interfacej523/2n is comparable to
the scaled persistence lengthl p /L05531023, we haven
;1023. The extensionx is varied from xmin51.0 mm to
xmax54.8 mm with Dx5uxi 112xi u set to 19 nm. The noise
intensityM, the small parametere, material constantsf c and
v are chosen to be 0.0005, 0.15, 12.5 and 3.7, respectiv
The simulations are performed for the waiting timeTw
52.5 and 3.0. Unfortunately, we cannot specify the prec
value of Tw in physical units because it is crucially depe
dent on the unknown kinetic coefficientL which has disap-
peared by the nondimensionalization. However, we h
checked thatTw52.5 and 3.0 are long enough for a polym
to reach quasistationary state for the above parameter
changingTw from 0.5 to 3.5, whereas the data is not show
in this paper.

We use the standard implicit method~Crank-Nicolson
scheme! for numerical integration by approximating the no
linear term as
2-3
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h@r~t1Dt!#>
r~t1Dt!1r~t!

2
@r~t!2b#@12r~t!#,

~16!

with the time incrementDt and grid sizeDs set to 0.005 and
0.0025, respectively.

Throughout the following calculations, the initial cond
tion of the chain is set to fully random-coil stater51 with
its extensionxmax54.8 mm. We first relax the polymer ex
tension toxmin51 mm, and again stretch it back toxmax
54.8 mm.

B. Force plateau

The calculated force versus extension curves are show
Fig. 3. The simulation was performed withTw52.5 in Fig.
3~a!, and withTw53.0 in Fig. 3~b!, respectively. It is found
that the elastic responses are obviously different from
WLC behavior. TheF-x curves clearly show the force pla
teaus of 1–2 pN during both stretching and releasing p
cesses. In the releasing process, a depression in the
curve can be seen associated with the onset of the f
plateau. It is likely to be due to the nucleation barrier
generate a critical globule nucleus. In the stretching proc
the plateau persists up to its extension;4 mm, which is

FIG. 3. Force versus extension curves. Parameters for t
plots are ~a! M5531024,n50.001, f c512.5,v53.7, Tw52.5;
~b! the same as~a! exceptTw53.00. The dashed line is Eq.~1! with
the parametersl p525 nm, L55 mm, andT5296 K.
06191
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corresponding to 80% of its overall chain length. Moreov
a marked hysteresis appears between stretching and rele
processes. These features are also generically observed
experiment@10,11#. One can find that the gap of the forc
plateaus between stretching and releasing processes in
3~b! seems to be narrower than that in Fig. 3~a!. Further
discussions of the physical mechanism underlying the em
gence of hysteresis and its relation to the waiting time
given in the following section.

Figure 4 shows the effective contour lengthLa as a func-
tion of the extensionx in the case of Fig. 3~b!. One can
clearly see thatLa is proportional tox while the force plateau
is observed in Fig. 3. This can be understood intuitively
noticing that~dimensionless! force f 5 f (z) remains constan
as far asZ[x/La does not change in our model calculation
Figure 4 also suggests that the chain becomes fully elong
in x.4.5 mm, which is consistent with the WLC behavio
found in x.4.5 mm in Fig. 3~b!.

C. Hysteresis and motion of domain boundaries

In order to examine the nature of the hysteresis in fo
curves, let us consider the motion of domain boundaries
the one-dimensionals space. The profiles ofr(s) for several
selected values of the extensionx is displayed in Fig. 5 for
parameters of Fig. 3~b!.

Suppose now that there areN domains at timet. As shown
in Fig. 6, a domain means a coil region in thes space, here-
after. We simply consider that there are 2N domain bound-
aries ~interfaces! and their width is much smaller than th
domain width. Note that the variableN can take a half of a
natural number as well. Representing the interface positi
of nth domain ass5Xn

(1)(t),Xn
(2)(t), we can write down the

equations of motion as

dXn
(1)

dt
5U~ f !, ~17!

dXn
(2)

dt
52U~ f !, ~18!

se

FIG. 4. Dependence of effective contour lengthLa on the ex-
tensionx in stretching and releasing processes for parameters a
Fig. 3~b!. The dashed lines areLa51.17x ~release! andLa51.15x
~stretch!, respectively.
2-4



-
e
f
e

ng

ss

MODEL OF ELASTIC RESPONSES OF SINGLE DNA . . . PHYSICAL REVIEW E66, 061912 ~2002!
FIG. 5. Evolution of spatial
domain structure along the poly
mer contour corresponding to th
extension change. A series o
these figures is obtained when th
force curve is Fig. 3~b!. The left
hand side represents the releasi
process from xmax54.8 mm to
xmin51.0 mm, while the right
hand side is the stretching proce
from xmin51.0 toxmax54.8 mm.
r

be

in
where the velocity is given from Eq.~14! by

U~ f !5U0tanhS f 2 f c

v D . ~19!

Let us consider the situation where the extensionx is var-
ied continuously as

x5x01gt. ~20!

By exchanging the variablex from t, Eqs. ~17! and ~18!
become

g
dXn

(1)

dx
5U~ f !, ~21!

g
dXn

(2)

dx
52U~ f !. ~22!

FIG. 6. Schematic illustration of the motion of doma
boundaries.
06191
Note that we have to choosex050 andg.0 in the stretch-
ing process, whilex05xmax and g,0 in the releasing pro-
cess. Then Eqs.~21! and~22! may hold in either stretching o
releasing process.

Extracting Eq.~22! from Eq. ~21!, we obtain

d

dx
~Xn

(1)2Xn
(2)!52g21U~ f !. ~23!

In the force-plateau region, where the forcef retains nearly
constant valuef p , the velocityU is also constant atU( f p)
[Up . Since most of the domains disappear atx50, X(1)

2X(2)→0 can be realized in the limit ofx→0. Solving Eq.
~23! with this condition, we easily find

Xn
(1)2Xn

(2)52g21Upx. ~24!

On the other hand, the apparent contour length can
calculated approximately in the limit ofe→0 as

La>E r~s!ds>(
n

~Xn
(1)2Xn

(2)!. ~25!

Substituting Eq.~24! into Eq. ~25!, we obtain

La52Ng21Upx. ~26!

Hence, we find that the quantity

Z5
x

La
5

g

2NU0
H tanhS f p2 f c

v D J 21

~27!
2-5
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is independent of the extensionx. This gives the value of the
slope of the dashed line in Fig. 4. This relation also provid
us a self-consistent equation forf p with the following for-
mula:

f p5Z1
1

4~12Z!2
2

1

4
. ~28!

Before solving Eqs.~27! and ~28! in terms of f p , we
remark on some points. First, since the conditionZ,1
should be satisfied at all times, the additional constraint
f p is imposed by

U gv
2NU0

U,Uv3tanhS f p2 f c

v D U,u f p2 f cu. ~29!

Second, it should be noted that the number of domainsN is a
certain decreasing function of the stretching~or releasing!
speedugu. In the limit of the quasistatic operationg→0, a
single-domain boundary may survive because the ph
separation proceeds macroscopically in eachx. Then, in or-
der that the apparent contour lengthLa;2xUp /g remains
finite at g→0, Up also approaches zero asg→0, which
means thatf p coincides withf c asymptotically in the quasi
static process.

So we restrict our interest to the smallg such that the
following condition typically may hold:

S f p2 f c

v D 2

!1. ~30!

In this case, it is allowed to neglect the higher-order terms
the expansion tanhx'x1O(x3). Settingy5 f p2 f c , we have
following simultaneous equations:

Z~y!>ay21 ~31!

and

y5Z~y!1
1

4@12Z~y!#2
2b, ~32!

where we puta5gv/2NU0 andb5 f c11/4. The constraints
~29! and ~30! may be expressed together as

uau,uyu and ~y/v !2!1. ~33!

Substituting Eq.~31! into Eq.~32!, we obtain the equation
for y as

p~y!5y42S 2a2b1
1

4D y31~a222ab2a!y2

1a2~b12!y2a350. ~34!

We first investigate the schematic profile of the functi
p(y). We readily find p(0)52a3, p(a)52a3/4, p8(0)
5a2(b12), andp8(a)523a2/4, where the prime denote
the derivation with respect toy. Therefore, for positivea,
Eq. ~34! has a solution iny,0, a local maximum some
06191
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where in the region 0,y,a, and a desired solution iny
.a, respectively. We represent this solution asy5D. . On
the other hand, we find that there is only one solution iny
,a which satisfies the constraint~33! for reasonable nega
tive values ofa and forb used in the above simulations. W
express this solution asy52D, .

As a consequence, the magnitudes of the force plate
are given by

f p
stretch5 f c1D. , ~35!

for stretching process (a.0), and

f p
release5 f c2D, , ~36!

for releasing process (a,0). Thus the finite force gapD
5 f p

stretch2 f p
release5D.1D, generally exists for nonzero

a. This directly suggests that the hysteresis appears in
force curve during stretch and release processes. Howeve
the quasistatic limita→06, Eq. ~34! simply becomes

y3~y1 f c!50. ~37!

Thus, the trivial solutiony50, namely,f p5 f c only survives.
Because we immediately haveD50 in this case, no hyster
esis appears in the force curve, at least apart from the in
transient regime of the onset of the plateaus.

We solved Eq.~34! numerically by changing the stretch
ing and releasing speedg. The results are shown in Fig. 7
Actually the magnitude ofg is represented by the waitin
time Tw , which is related tog as g5uDxu/Tw . We set
uDxu53.831023 corresponding to the simulations in Fig.
We also substituteN(g) with the average number of domain
N̄. Judging from Fig. 5, we setN̄52 in the stretching pro-
cess andN̄55 in the releasing process, respectively. No
that the dimensionless valuef p is converted to the real force
valueFp asFp50.1633 f p in Fig. 7. The predicted values o
Fp by the present simple analysis are very close to th
obtained in the simulations as summarized in Table I. T
calculation also predicts that the force gap decreases
increase of the waiting time, and vanishes in the long wait
time limit. This implies that the polymer essentially unde

FIG. 7. The magnitudes of force plateaus in stretching a
releasing processes given as the solutions of Eq.~34!.
2-6
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goes nonequilibrium phase transition when it is stretched
relaxed with a finite speed, whereas its conformational tr
sition recovers equilibrium reversibility only in the quas
static operation limit. Although such a consideration is a
expected from the simple thermodynamical argument,
confirm this statement, one may require a more deta
study due to the complexity of the present system. They
be reported elsewhere.

IV. STICK-RELEASE PHENOMENA

A. Modular structure

When the concentration of multivalent cation is lar
enough to induce deep condensation of a single polymer
force-extension curves show stick-release patterns. In the
periment @11#, there is a tendency for the stick-release
sponse to occur periodically with a certain characteris
length l u;300 nm. We immediately associate this findin
with a beaded structure, where a few ‘‘crystallized’’ globul
objects are connected with short coils~see also Fig. 8!. Such
a morphology has been actually observed by fluoresce
microscopy in a long DNA chain collapsed but partia
stretched by the externally applied electric field@13#. Pro-
vided that the chain takes such a beaded structure, s
release responses correspond to subsequent abrupt rele
condensed objects. Furthermore, sincel u is comparable to
the length of one turn of toroid@5,6#, we empirically con-
sider that a globular bead forms a toroidlike structure with
typical size d;100 nm. It is considered that such an i
tramolecular phase segregated state is thermodynami
stable. Some authors have observed such a state that com
domains with their typical sizesd remain stable without fur-
ther aggregations@4,13#. However, to answer the questio
that why such a unique structure is generated within a sin

TABLE I. The magnitudes of force plateaus in stretching a
releasing processes obtained by Eq.~34! and by the simulations
The values from the simulations averaged betweenx52 mm and
x53 mm.

Tw52.5 Tw53.0

Fp
stretch ~simulation! 2.48 2.48

Fp
stretch ~prediction! 2.41 2.35

Fp
release ~simulation! 1.76 1.90

Fp
release ~prediction! 1.88 1.91

FIG. 8. Schematic illustration of an intramolecular phase seg
gated chain as an image.
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molecule is beyond the scope of this paper. Instead,
solely give a rather simplified description of the stick-relea
phenomena and show that qualitatively similar elastic
sponses can be reproduced by slightly modifying our plat
model.

From these considerations, let us employ further coa
graining of the spatial structure of the polymer. The char
teristic length is not the persistence lengthl p as opposed to
the force plateau, but the diameterd of the compact globular
object in the real space. We expect that the order param
r(s) is constant, at least within the distancel u along s.
Moreover, the interface betweenr50 andr51 may be very
steep. We then assume that the chain is composed oQ
5L0 / l u pieces of ‘‘modules’’ that can undergo a transitio
between two energetically different states. Although this id
is originally inspired by the work of Riefet al. @15# for the
muscle protein titin, whether such a modular structure
spontaneously formed is less pronounced in a collap
DNA chain. In case of the DNA chain, there is releva
short-range interaction between polymer segments to rec
structural uniformity. Such an effect can be partially respo
sible for the formation of a compactly packed toroidal stru
ture. We thus let the diffusion constantn be finite in the
present model.

On the basis of these preparations, let us improve
model to suit the present situation. The procedure is sim
as follows:

r~s,t!→r i~t!, E
0

L0
ds→ l u(

i 51

Q

. ~38!

This is the discrete version of the plateau model. A conf
mational transition mainly occurs when it is thermally ac
vated.

B. Simulation results

Numerical simulations were performed with the para
etersQ516, e50.10, andM55 –631025. It is legitimate
here to choose a smaller value ofM than that for the force
plateau because the effective potentialW has deeper minima
in the collapsed phase. Other conditions are the same
those of the preceding section.

A selected plot of the elastic responses are shown in
9. In stretching processes, stick-release-like patterns app
while the force plateaus of 0.5–2 pN in magnitude are o
served during relaxing process. Force magnitudes at the p
positions are generally within the range of 4–12 pN. Hen
the main features of our previous measurements on ela
response of a collapsed DNA@11# are reproduced by the
present numerical calculations for reasonable values of
dimensionless parameters.

In Fig. 10, we plot the effective contour lengthLa as a
function of the extensionx for parameters of Fig. 9~a!. The
curveLa5La(x) looks rather irregular compared to that of
force plateau. Sharp changes of the contour length may
respond to abrupt releases of the globular objects or ra
-
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WADA, MURAYAMA, AND SANO PHYSICAL REVIEW E 66, 061912 ~2002!
condensations of narrow coils. Hysteresis in theLa versusx
curve is more evident than that of the force plateau, wh
reflects the larger irreversible work in the cycle process
can be seen from Fig. 9.

Lastly, we show the profile ofr(s) for several selected
values of the extensionx in Fig. 11 for parameters of Fig
9~a!. Apart from the regions near domain boundaries,
overall structure and its evolution are, at first sight, simi
with those of the force plateau. The structure emerged in
column of x51.20mm can be interpreted as the expect
beaded structure. However, because of the shortness o
original contour length, a beadlike structure seems to be
ficult to appear in the present case on the whole. A lar
amount of toroidal object would be generated provided t
the chain is much longer. To our knowledge, there is
experimental report to study whether such a morpholog
actually formed when the chain is stretched by the mech
cal stress. It is of great interest and one of the present aut
is now conducting the experiment to clarify this question

V. DISCUSSION AND SUMMARY

Our theoretical calculations suggest that two types of e
tic responses, i.e., force plateau and stick-release pattern
be understood as WLC behavior of an apparent con

FIG. 9. Force versus extension curves. Parameters for t
plots are~a! M5631025, n50.001, f c512.0, v56.0, Tw53.0
~b! M5531025, n50.001, f c512.0, v58.0, Tw52.5.
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length which can vary with the force dependent transit
rate. It is proved that combining the elastic theory of a sin
polymer with the kinetics of a metastable system is effici
to describe the main features of the measured force-exten
curves of a collapsed DNA. In particular, the continuu
model with diffusion along the chain is suitable for descr
ing a force plateau. The motion of domain boundaries, wh
can be induced by the force working on the chain, is imp
tant to understand the plateau in force curves. We also fo
from the simple analysis that hysteresis is generically app
ciable for finite stretching speed, while it is expected to va
ish in the quasistatic limit. This implies that the system
generally in the nonequilibrium process in the stretching
periment. On the other hand, a steep change in the meas
force may involve an abrupt and cooperative transition fr
a globular state to an elongated coil state. Therefore, a mo
lar structure seems to be an essential ingredient for the s
release pattern. Although there is no consensus of this
gestion, our calculations based on the discrete mo
strongly supports this idea.

Here we refer to the dimensionality of the system briefl
In the present study, we considered the one-dimensional
tem and only took into account the closeness due to
connection between segments along the chain. Howe
since the polymer is embedded into a three-dimensional
tem, it is generally possible for a segment to have con
with other segments which are separated along the ch
Such a contact may become a trigger for further growth o
condensation when the chain is in the metastable state u
a poor solvent condition. Thus, the dimensionality is an i
portant problem, in general, to consider a coil-globule tra
sition @14#. In our case, however, both the ends of the po
mer are trapped at controlled positions and the chain
forced to stretch with shorter apparent contour length th
the original one. Then the polymer is considered to be rat

FIG. 10. Shown are extension dependence of effective con
lengthLa in the forward and reversed process for parameters a
Fig. 9~a!.
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FIG. 11. Evolution of spatial
domain structure along the poly
mer contour corresponding to th
extension change. A series o
these figures is obtained when th
force curve is Fig. 9~a!. The left
hand side represents the releasi
process from xmax54.8 mm to
xmin51.0 mm, while the right
hand side is the stretching proce
from xmin51.0 toxmax54.8 mm.
itu
n

ion

o
b

im
th
rc
m

d
gi

m
o
th
l-
ar
f

n

ra
rg
sin
o
o
ly
A
e

t

A

ed,
re-

r the
en

ou-
e to

ed
de-
our-
om-
we
er
atic

rip-

ful
ies.
ble
‘‘straight’’ almost throughout the measurements. In such s
ations, a nucleation primarily occurs by the contact amo
nearby segments along the chain. Thus, our one-dimens
model is expected to be fairly appropriate.

Regardless of the satisfactory agreements between
theoretical calculations and experimental results, it should
still concerned that our present model is somewhat overs
plified, especially for the stick-release phenomena. In
paper, we applied slightly different models to describe fo
plateaus and stick-release responses, respectively, which
be eventually the source of our uneasiness. We assume
attractive force between polymer segments from the be
ning by preparing the double-well potentialW for the chain
conformation. In order to avoid any complexity and to e
phasize on the influence of the condensation of a DNA m
ecule on its mechanical property, we did not consider
electrostatic effects explicitly. However, since a DNA mo
ecule is highly charged with negative charges and a ne
90% charge neutralization by the counterions is needed
the DNA condensation to occur@16#, electrostatic effects are
intrinsically most important in determining the conformatio
of a DNA. Many attempts have been made so far@17–20# to
clarify the counterion induced attraction between two pa
lel charged rods as a model of the condensation of cha
macromolecules, and some of them seem quite promi
now. But they cannot be directly applied to the problem
the condensation of biopolymers, mainly due to the lack
knowledge on the delicate molecular architecture of biopo
mers@20#. Then, for more realistic problem such as a DN
condensation induced by multivalent cations, many conc
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tual questions still remain~even when the polymer is no
subjected to any mechanical stress!. Hence, it offers further
complicated problem of how and why a collapsed DN
chain forms the unique modular structure under load@11#.
There may be a lot of important ingredients to be consider
such as the competition between long-range Coulombic
pulsion and short-range attraction between segments, o
gain of translational entropy by the exchange betwe
monovalent and multivalent cations@4#. Besides, not only
these electrostatic-originated effects but also dynamical c
plings between them and the conformational change du
external stress may enter into our problem.

Although the situation seems rather difficult as mention
just above, it is still challenging to develop an elaborate
scription on the observed stick-release phenomena. Enc
aged by the good agreement between our present phen
enological model and the experimental observations,
further expect that it is a promising way to introduce anoth
order parameter in order to account for these electrost
effects, as well as the current order parameterr. On the basis
of this prospect, constructing a two-order-parameter desc
tion on the DNA condensation is in progress.
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